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Abstract--An idealized bilaminate multilayer of alternating "competent' and 'incompetent' layers with different 
proportional thicknesses is used to model theoretically the manner in which flow in rocks may vary from layer to 
layer during deformation. The layers are assumed to flow according to a 'power law', with stress exponent (n) of 1 
(=Newtonian flow), 3 or 5, which is in accordance with current experimental data for flow in rocks. The 
theoretical analysis concentrates first on incompressible plane flow, and is then cxtended to some forms of 
incompressible three-dimensional flow. 

Strain-rate variations from competent to incompetent layers are illustrated for two-dimensional flows on 
'rheology graphs' of log stress vs log strain-rate. Three types of bulk multilayer deformation are illustrated: layer- 
parallel pure shearing (LPPS), layer-parallel simple shearing (LPSS) and layer-oblique straining (in different 
orientations). The degree of flow partitioning varies with the bulk flow, layer thicknesses, and layer n values. For 
all systems in plane (two-dimensional) flow, the greatest partitioning occurs for 45 ° bulk shortcning (LPSS), and 
is most extreme for high n values, such that the strain-rate is virtually zero in competent members. However, for 
three-dimensional flows, preliminary results suggest that the value of n may play a less significant role in flow 
partitioning, particularly for bulk pure flattening or constrictional flows. 

These theoretical flow variations provide some meaning to "competent contrast' in rocks, and reveal possible 
links between relative competence and deformation history. Such flow variations in space and time may provide 
the driving mechanism for folding in ductile multilayered systems. 

INTRODUCTION 

THE geometry of naturally deformed rocks reveals the 
important part played by competence contrasts in the 
development of structures. Some of the most geometri- 
cally aesthetic geological structures, such as the folds 
and boudins so beautifully illustrated in John Ramsay's 
publications (Ramsay 1967, 1982, Ramsay & Huber 
1983, 1987), are a direct result of the distinct differences 
in flow and material behaviour of adjacent rock layers. 

To a field geologist, competence contrast is usually 
inferred from the degree of ductile deformation of 
lithologies, and from styles of structures. To a theoreti- 
cian studying folding instabilities, competence contrast 
is equated with viscosity ratio, and so competence is an 
instantaneous measurement of resistance to flow. (For 
the varying usages and definitions of the term com- 

petence, see Treagus 1988.) Only if rocks flow with a 
constant viscosity (as Newtonian fluids) can competence 
contrast be considered to be a material constant for a 
protracted deformation, or for different deformation 
rates. 

The question of whether ductile rocks flow as linear or 
non-linear fluids is of topical importance, as it affects 
assumptions for theoretical analyses, choice of materials 
for modelling, and extrapolations of laboratory data. 
Results drawn from decades of experimental rock defor- 
mation studies suggest that for a wide variety of rocks 
and experimental conditions, steady-state creep 
approximates to a 'power law'. For two-dimensional 
flows, this is commonly expressed as the Weertman 
relation, k = A exp (-QcRT) o n (Tsenn & Carter 1987) 
(where b is the steady-state strain rate, cr the differential 

stress, A a material constant, n the stress exponent, Qc is 
the activation energy for creep, ,~ the universal gas 
constant and Tthe temperature). Carter & Tsenn (1987, 
table 4) and Kirby & Kronenberg (1987, table 3) collate 
much of the data available for the above variables, for 
many different rock types and many different laboratory 
experiments. 

The above relation for steady-state creep is a power 
law comparable with the common expression for power- 
law fluid flow, b -- A o". This relation can be expressed 
for two-dimensional flows in terms either of shear stress 
and strain rates, or deviatoric normal stress and strain 
rate (see, e.g. Ranalli 1987, p. 75). For non-plane flows 
the power relation is written in terms of the second 
invariants of the stress and strain-rate tensors (e.g. 
Hobbs 1972, Fletcher 1974, Cobbold 1983). 

If rocks do indeed flow according to a power law, the 
relationship of the viscosity contrast during a defor- 
mation, and a finite competence contrast interpreted 
from the contrasts in strain, could be quite complex. 
Since the viscosity of a power-law material changes with 
strain rate, any deformation of layered systems which 
has a non-constant flow history in the individual layers 
will mean that the viscosities change throughout the 
deformation; so in general, viscosity ratios will not 
remain constant. 

The present paper continues my earlier theoretical 
analyses of variations and refraction of stress, strain-rate 
and finite strain in Newtonian viscous layers (Treagus 
1973, 1981, 1983, 1988), and applies the same principles 
to layers with power-law theology. It follows on from 
Cobbold's (1983) analysis of behaviour across inter- 
faces, and from laboratory modelling which tested the 
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Fig. 1. Types of two-dimensional bulk flow for an idealized bilaminate multilayer. Shaded layers indicate alternating 
'competent '  and ' incompetent '  layers, here of equal thickness (a c = a I = 0.5). A general layer-oblique bulk shortening 
given in (c) (where 0 = 30 °) can be considered, in (d), in terms of components of LPPS and LPSS, for two-dimensional 
oblique-plane flows. Plane of view is the xy plane, where x is parallel to layering, y, perpendicular and z is the third 

dimension. 

theoretical base, and measured strain variations in sili- 
cone putty layers of Newtonian and power-law-type 
rheology (Treagus & Sokoutis 1992). To avoid un- 
necessary duplication of background material, readers 
are referred to all these papers for the theoretical base, 
to Treagus (1988) for further information on com- 
petence, and to Treagus & Sokoutis (1992) for further 
references on the rheology of rocks. 

Theoretical flow variations in ductile rocks are 
modelled here using an idealized multilayer (e.g. Fig. 1): 
a bilaminate system of two alternating contrasting 
layers, as considered by Bayly (1964), Latham (1985a) 
and others. The layer thickness proportions, flow 
properties for the component layers and layering orien- 
tation may all be considered as variables. The bulkflow 
can be considered in terms of flow in a statistically 
anisotropic medium (Biot t965, p. 186, Cobbold et al. 
1971, Cobbold 1976, Latham 1985a,b). However, in this 
paper I investigate the partitioning of a bulk flow (sensu 
Lister & Williams 1983) within the component layers of 
a multilayer; that is, the strain and strain-rate variations 
from layer to layer. Strong variations in flow between 
the relatively competent and incompetent components 
of the idealized multilayer must be expected, compar- 

able to the finite strain variations and strain refraction 
found in earlier work assuming Newtonian rheology. 
Although the present analysis does not allow finite strain 
variations to be derived for power-law layers, the flow 
(strain-rate) variations will allow some predictions to be 
made about deformation histories, and the degree to 
which the power-law stress exponent, n, might influence 
degree of flow partitioning. 

FLOW VARIATIONS IN A BILAMINATE 
MULTILAYER: THEORETICAL MODEL 

Figure 1 shows examples of types of flow in idealized 
bilaminate multilayers, where (a) and (b) are the special 
deformations of layer-parallel pure shearing and layer- 
parallel simple shearing. Figure l(c) shows a general 
layer-oblique flow, which for isovolumetric two- 
dimensional flows (and neglecting vorticity) can be con- 
sidered in terms of components of pure and simple 
shearing (Fig. ld), comparable to the analysis of finite 
strain as components of layer-parallel pure shear and 
simple shear (Treagus 1988, fig. 3). 
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The bilaminate multilayer is assumed to have alter- 
nating competent and incompetent layers (denoted C 
and I throughout the paper), deforming in bulk steady- 
state shortening at an angle, 0, to the layering. The flow 
is here assumed to be plane (two-dimensional) and 
incompressible. (The theoretical analysis is later applied 
to cases of three-dimensional flow, where layering is 
parallel to one principal axis of straining.) Flow in both 
the competent and incompetent layers follows a power 
law, b = A o n, as introduced above. The alternating 
layers are assumed to be isotropic, and have the same 
value of stress exponent, n, but different A. (Values 
used are n = 1, n = 3 and n = 5.) Although it is probably 
an unreasonable geological assumption that competent 
and incompetent layers have equal n values, it is con- 
venient for the present analysis in order to find simple 
solutions to the equations. 

The requirements of compatibility and continuity for 
the multilayer in flow are equivalent to those in the 
earlier stress and strain refraction analyses (see Treagus 
1973, 1981, 1983, 1988, Cobbold 1983): equal layer- 
parallel normal straining and equal layer-parallel shear 
stress. In addition, for the present multilayer approach, 
the sum of individual layer-parallel shear strain rates 
determines the bulk layer-parallel shear strain rate as for 
anisotropy theory (Biot 1965, p. 432). 

Appendix 1 presents a detailed algebraic derivation of 
flow variations in the idealized power-law multilayer, 
following the above assumptions and theoretical 
requirements. The three general equations necessary to 
derive solutions are summarized below, and results and 
examples given in the following section of the paper. 

Summary of equations for two-dimensional flow 
variations, from Append& 1 

Use 0, for the orientation of principal bulk shortening 
to the layering, and 0c and 01 for the competent and 
incompetent layers, respectively. Normalize all the prin- 
cipal strain rates as factors of the bulk principal 
(elongating) strain-rate: 

e.g. ec = el(c)/el(bulk). 

Use a c and al to denote thickness proportions of com- 
petent and incompetent layers, respectively (as for 
anisotropy theory), where ac + al = 1. The viscosity 
ratio (,Uc/#0 is termed M, where/~c and ~i are the 
viscosity terms for competent and incompetent layers, 
respectively. M will be determined as a function of R, 
where R is the viscosity ratio for layer-parallel pure 
shearing. 

From Appendix 1 (equation A16), for 0 < 0 < 45 ° or 
45 < 0 < 90 °, 

m-~ R[1 + tan 2 20/a2] (n-1)/zn. (1) 

For equal thickness layers (ac = al = 0.5), 

M ~- R[1 + 4 tan 2 20] (n-1)/zn. 

For 0 = 45 °, or layer-parallel simple shearing, M = R n, 
regardless of relative thicknesses. 

From (A9) 
tan 20c = tan 20/(ac + Mal) 

tan 20i = M tan 20/(a c + Mai). 

For equal thickness layers (a c = a I = 0.5), 

tan 20c = 2 tan 20/(1 + M), 

tan 20t = 2M tan 20/(1 + M). 

From (A3) 

(2a) 

(2b) 

ec = cos 20/cos 20c (3a) 

el = cos 20/cos 20v (3b) 

For 0 = 45 °, ec/e I = 1/M, and 

e c = 1/(a c + Mai) 

el  = M/(ac + Mal). 

Equations (1)-(3) provide the method of determining 
the properties of two-dimensional flow in a bilaminate 
multilayer. The following sections provide some 
examples of results obtained using this algebra. 

TWO-DIMENSIONAL FLOW VARIATIONS IN A 
BILAMINATE MULTILAYER: RESULTS AND 

EXAMPLES 

The rheology graph 

A useful way to illustrate the relationship between 
flow variations and rheology for different materials can 
be made (for plane flows) on a log k vs log cr graph, here 
called a rheology graph. This graph has been used to 
represent rheology of model materials like silicone put- 
ties, plasticines and waxes (e.g. Cobbold 1975, McClay 
1976, Dixon & Summers 1985, 1986, Weijermars & 
Schmeling 1986, Sokoutis 1987, Mancktelow 1988). 
Treagus & Sokoutis (1992) have recently used such 
graphs to represent flow variations across rheological 
boundaries for their laboratory models. 

The log stress vs log strain-rate graphs used in this 
paper are drawn in terms of maximum shear stress and 
strain rates (r and ))), but the diagrams are interchange- 
able with maximum differential stress vs longitudinal 
strain-rate (o and ~). On both types of graph, if axes are 
drawn to the same scale, Newtonian materials (n = 1) 
follow 45 ° diagonals, and power-law materials straight 
lines whose gradients are 1/n. 

This type of graph allows the relationships between 
bulk multilayer flows and individual layer flows to be 
represented, and important principles illustrated im- 
mediately. Results of flow variations for layers with n = 
1, 3 or 5, and particular thickness proportions, derived 
algebraically from equations (1)-(3), can be readily 
compared, graphically. 

Layer-parallel pure shearing, and layer-parallel simple 
shearing 

A rheology graph clearly illustrates the differences of 
flow for layer-parallel pure shearing (LPPS) and simple 



426 S.H.  TREAGUS 

a + l  / _ ) .  / I 

Equal strain and strain-rate in all layers ---~ 1 "+,"-" / ] "  

i - "  " -  / . _ / _  <LP  , 
1~. // M=R= 10 a / f M=R= 10 

O; LAYER-PARALLEL SIMPLE SHEAR (LPSS) ~ "  V i ( 7  I I / 
_1 Equal interface-parallel shear stress 1 ~" I ~" 

a - 1  // 
- 5  - 4  - 3  - 2  - 1 ec 

Log 1) (s -+) Normal ized 

/ 
(LPPS) / 

I 
i (z 

Fig. 2. Rheology graph for two imaginary Newtonian materials (C, I) with viscosity ratio of R = 10, for deformations of 
layer-parallel pure  shearing (LPPS) and layer-parallel simple shearing (LPSS) for the idealized multilayers (inset, and Fig. 
la  & b). The stress and viscosity scales are arbitrary (relative), and the strain-rate scale is shown relative to the bulk principal 
strain-rate (i.e. normalized; log e). Squares indicate layer strain-rates for LPPS, and diamonds for LPSS. Vorticity is not  
represented on the diagram. See inset and text for explanation. For an alternative dimensionless diagram, the axes would be 

log (3S/s -1) and log (r/Pa). 

shearing (LPPS) of multilayered systems. These two 
special deformations (Figs. la&b) are illustrated for a 
bilaminate of equal layer thickness proportions, in Figs. 
2 and 3, for Newtonian and power-law (n = 3 or 5) 
multilayers, and R = 10. 

It is apparent that for LPPS, the strain-rate is required 
to be the same in the two layers (homogeneous flow), 
and so flow 'tie-lines' between competent and incompe- 
tent layers are ordinate-parallel. For LPSS, the tie-lines 
are abscissa-parallel (constant stress), because of the 
requirement of equal layer-parallel shear stress, which 
for this deformation means constant stress. Thus it 
follows that for LPSS, the strain-rates must be different 
(by the inverse viscosity ratio). The partitioning of flow 
between competent and incompetent members is indi- 
cated by values of ec and e~ in Fig. 2 (Newtonian) and 
Table 1 (all), derived algebraically as given above. It is 
clear, from comparison of Figs. 2 and 3(b), that there is 
greater flow partitioning between the layers (C, I), at 
higher n. 

Figures 2 and 3 illustrate that the viscosity ratio, M, is 
not equivalent to R, except for the Newtonian example. 
The relationship, M = R n, for LPSS is graphically 
evident. It is also evident that competent and incompe- 
tent layers with the same n value (represented by paral- 
lel lines) have viscosity ratios for pure shearing and 
simple shearing which are independent of strain-rate. 
However, for two layers with different n (non-parallel C 
and I lines; not illustrated), M is also dependent on 
strain-rate, and materials can even exchange relative 
competence, when their representing lines cross over 
(see Treagus & Sokoutis 1992, fig. 12b). 

General layer-oblique bulk flows 

Equations (1)-(3) (also Appendix 1) allow flow vari- 
ations to be calculated, and principal strain-rate orien- 
tations determined, for a bilaminate of any thickness 
proportion and power-law flow properties, with the 
restriction that both component layers have the same 
stress exponent, n, as noted earlier. The main set of 
examples presented here are the equal-thickness layers 
and R = 10. Comparisons are made for different layer 
orientations, and for n = 1, 3 and 5. Other thickness 
proportions are investigated later. 

Table 1. Numerical  values of flow variations for bulk plane straining, 
for the examples illustrated in Figs. 2-6. All multilayers have equal- 
thickness competent  and incompetent  layers, as in Fig. 1, and R = 10. 
0 is the orientation of bulk shortening to layering, M is the shear  
viscosity ratio, ec and et are normalized principal extensional flows, 
and Oc and 01 orientations of principal shortening flows (C = com- 
petent,  I = incompetent) .  LPPS = layer-parallel pure shearing; LPSS 
= layer-parallel simple shearing. For 0 = 60 °, the M, ec values are 
equivalent to the 30 ° case, and 0 c and 0j angles are complementary  

R = 10 0 M e c e] Oc Ol 

n = l  
LPPS 0 10 1 1 0 0 

30 ° 10 0.52 1.65 8.73 ° 36.2 ° 
LPSS 45 ° 10 0.18 1.82 45 ° 45 ° 

n = 3  
LPPS 0 10 1 1 0 0 

30 ° 23.5 0.5 1.73 4.02 ° 36.62 
LPSS 45 ° 103 0.002 2.0 45 ° 45 ° 

n = 5  
LPPS 0 10 1 1 0 0 

30 ° 27.9 0.50 1.75 3.42 ° 36.68 ° 
LPSS 45 ° 105 0.00002 2.0 45 ° 45 ° 
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Fig. 3. Rheology graphs, as Fig. 2, but here representing an equal-thickness bilaminate with both layers in power-law flow 
and with equal stress exponent:  (a) n = 3; (b) n = 5. The viscosity ratio for layer-parallel pure shearing (LPSS) (R) is 10. All 

symbols and abbreviations as in Fig. 2. Further  explanation in the text. 

1" x 

Figure 4 shows normalized flows (e) for the equal- 
thickness Newtonian multilayer (also Fig. 2), for bulk 
shortening orientations in 10 ° intervals of 0, from 0 to 
90 °. The 45°-shortening position can be considered 
equivalent to layer-parallel simple shearing (LPSS in 
Fig. 2), for instantaneous flow, and neglecting vorticity. 
Complementary angles of layer orientation, such as 30 ° 
and 60 °, yield the same results for normalized strain- 
rates (Fig. 4), and complementary angular results. Fig- 
ure 4 gives values of e for 30 ° (60°), compared to values 
for 0, 45 and 90 ° (also Table 1). In the competent layers, 
flow is partitioned to roughly half of the bulk flow at 30°; 
it is about a fifth at 45 °. In the incompetent layers at 45 °, 
flow is partitioned up to almost twice the bulk rate, and 
the difference between 30 and 45 ° is less distinct. 

Figure 5 shows flow variations for equal thickness 

power-law rnultilayers with R = 10, and (a) n = 3 or (b) 
n = 5, for 0, 30, 45, 60 and 90 ° shortening orientation to 
layering. Numerical values of M, e o  el, 0 o  0~ are given 
in Table 1. Note that the viscosity ratio (M) for 30 ° (or 
60°), computed according to equation (1), is 23 for 
n = 3, and 30 for n = 5. Although considerably more 
than the value of 10 for layer-parallel shortening, these 
are magnitudes less than the value of 103 for n = 3, and 
105 for n = 5, for layer-parallel simple shearing (45°). 
Thus, the changes in viscosity ratios and flow partition- 
ing as layer orientations go from 30 to 45 °, or 45 to 60 °, 
are dramatic. For the n = 5 example (Fig. 5b), the 
decrease in e c from 0 to 45 ° is more than four orders of 
magnitude, which in effect means that flow virtually 
stops in the competent layers, at 45 ° . In contrast, the 
flow in the incompetent layers is almost the same for 30 
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Fig. 4. Flow variations for oblique multilayer shortening, such as 
Fig. l(c), represented on a rheology graph (cf. Fig. 2) for equal- 
thickness Newtonian multilayers. Pairs of numbers (e.g. 0, 90; 30, 60) 
indicate orientation of bulk shortening to layering 0 (degrees); comp- 
lementary angles have numerically equivalent strain-rates. Numerical 
values of normalized principal strain-rates (e) are given for 0 = 0 (90), 

30 (60), and 45°; see also Table 1. 

and 45°; close to twice the bulk flow. In the incompetent 
layers the differences in normalized flow for different n 
(Table 1; el) are very slight. 

Such small flow fluctuations in incompetent layers, 
and less sensitivity to n, compared with orders-of- 
magnitude variations in the competent layers, are likely 
to be of importance in the deformation history of multi- 
layers, whether they fold or not. The results here suggest 
that incompetent layers in a multilayer will be likely to 
flow more closely to 'steady state', whereas competent 
layers could experience rapid decelerations and acceler- 
ations of flow, especially where layer rotations accom- 
pany bulk flow. 

Orientations of principal strain-rates: strain-rate 
refraction 

Accompanying the partitioning of flow from layer to 
layer in the bilaminate multilayer are changes in princi- 
pal strain-rate orientation, given by equation (2). For 
the Newtonian example, these are equivalent to the 
stress (or strain-rate) refraction relationships of earlier 
work (Treagus 1973, 1981). 

Orientations of principal straining are given in Fig. 6. 
Clearly, no refraction occurs at 0 ° or 90 ° (homogeneous 
pure shearing), and 45 ° (heterogeneous simple shear- 

Table 2. Effect of competent and incompetent layer thickness 
proportions in a multilayer on the flow variations, a c = 0.5 values a r e  
the equal-thickness examples in Figs. 1--6. (a) 0 = 45 °, equivalent to 
layer-parallel simple shearing, for five thickness proportions; n = 1 
(Newtonian) is illustrated in Fig. 7. Note that for n = 3 and 5, el is 
almost exactly equal to 1/al. (b) 0 = 30 ° for three thickness pro- 
portions. For 0 = 60 °, all angles are complementary to these 30 ° 

results, and other variables the same. See text for full discussion 

(a) R = 10 0 = 45 ° 
(2 C a I e C el 0c = 01 = 45 ° 

n = l  M = 1 0  
0.9 0.1 0.52 5.52 
0.67 0.33 0.25 2.5 
0.5 0.5 0.18 1.18 
0.33 0.67 0.15 1.47 
0.1 0.9 0.11 1.11 

n = 3 M = 103 
0.9 0.1 0.01 9.91 
0.67 0.33 0.003 3.02 
0.5 0.5 0.002 1.20 
0.33 0.67 0.0015 1.49 
0.1 0.9 0.001 1.11 

n = 5 M = 105 
0.9 0.1 0.0001 10 
0.67 0.33 0.0000 3.03 
0.5 0.5 0.0000 2.0 
0.33 0.67 0.0000 1.49 
0.1 0.9 0.0000 1.11 

( b )  R = 10 0 = 30 ° 
a c a I M e c e I 0 C 01 

n = l  
0.9 0.1 10 0.68 4.48 21.2 ° 41.8 ° 
0.5 0.5 10 0.52 1.65 8.73 ° 36.2 ° 
0.1 0.9 10 0.51 1.09 5.39 ° 31.4 ° 

n = 3  
0.9 0.1 67 0.51 7.17 6.4 ° 43 ° 
0.5 0.5 23.5 0.5 1.73 4.02 ° 36.62 ° 
0.1 0.9 16.7 0.61 1.08 3.26 ° 31.2 ° 

n = 5  
0.9 0.1 98 0.51 7.96 4.6 ° 43.2 ° 
0.5 0.5 27.9 0.50 1.75 3.42 ° 36.68 ° 
0.1 0.9 18.6 0.50 1.08 2.94 ° 31.2 ° 

ing). For the Newtonian example, the maximum incre- 
mental strain refraction occurs for layers in the 30-40 ° 
(or 50-60 °) orientation range. The values for the n = 2, 3 
or 5 multilayers, for 30 or 60 ° layering orientation (Fig. 
6, Table 1), show almost the same principal strain-rate 
orientation in incompetent layers as the Newtonian 
case, confirming relative insensitivity to n. However, in 
the competent layers the principal directions are more 
noticeably different, for different n, and more nearly 
layer-parallel at higher n. This could be anticipated from 
the flow variation results discussed above. 

Effect of layer thickness 

Figure 7 illustrates the effect of varying layer thickness 
proportions, ac  and ai, on flow partitioning in the 
Newtonian multilayer at 45 ° to bulk shortening (or 
LPSS): this is the situation where the normalized princi- 
pal flows are the minimum values for competent mem- 
bers, and the maximum for incompetent (as arrowed in 
Fig. 7). It is apparent that the greatest differences from 
the bulk flow (given by e values) occur in the thinnest 
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Fig. 5. Flow variations for oblique multilayer shortening such as Fig. 1 (c), represented on a rheology graph for two 
equal-thickness power-law multilayers: (a) n = 3 (as Fig. 3a); (b) n = 5 (as Fig. 3b). Flow partitioning is represented for 

0 = 30 (60), and 45 °. Numerical values are given in Table 1. 

Tx 

layers (see 0.1 positions).  Conversely ,  the major-  
thickness componen t s  are closer to the bulk flow, 
though  less so for  thick compe ten t  layers; even where  a¢ 
= 0.9, normal ized flow in compe ten t  members  is only 
half  the bulk rate. 

Table  2 compares  the results of  flow for  different  

thicknesses of  layers, for the n = 1, 3 and 5 multilayers 
with unequal  layer  thicknesses. Values are given for  45 °- 
shor tening (LPSS),  which include the data in Fig. 7, and 
for  30 °- or  60°-shortening. Results  for 45 ° (Table 2a) 
show that  ei = 1/ai, for n = 3 or  more .  Hence ,  for a thin 
incompeten t  layer such as al  = 0.1, ei approaches  10 



430 S.H.  TREAGUS 

--NEWTONIAN, R = 10, EQUAL THI KNE S / 

aOi° POWER LAW , n=2 & 5 , - * ' ~ / /  
/ / I 

o / 
~:~60 I 25 

14 / /e  O0 

/ / . - f  

,, C / / / /  
.C 52  ,/ 2 /  
, , 3 0 0 0  ¢ 

.~ i/ / /  
20 ~ 

10 ~ " / / '  I s" 
I / / s " " " "  

10 20 30 40 50 60 70 80 90 

Angle of shortening to layering • competent 
• incompetent 

Fig. 6. Orientations of principal shortening in competent (C) and 
incompetent (I) layers (0c, 00,  for the Newtonian multilayer examples 
represented in Fig. 4. Values are also given for power-law multilayers 

with n = 2 and 5, for 0 = 30 and 60% For n = 3, see Table 1. 
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F ig 7 Effect of layer thickness proportions, a c (competent) and 
a= (incompetent), on flow partitioning for the Newtonian multilayer 
(R = 10) in 45 ° shortening, or LPSS (compare with Fig 4 )  Numerical 
values of normalized principal flows (e c and e=) are given by arrows, 
and marked min. and max. to indicate that for a particular multilayer, 
these values at 45 ° indicate the minimum flow for the competent 
members,  and the maximum for the incompetent. Comparable values 

for n = 3 and n = 5 multilayers are given in Table 2. 

times the bulk strain-rate. For similarly thin competent 
layers, flow is virtually zero, and approaches the bulk 
state in the thick incompetent members. Because flow is 
increasingly partitioned for increasing n, the flow in the 
competent layers can be virtually neglected for high n, 
all the flow being partitioned into the incompetent 
members. 

Results for 30 ° (in Table 2b) reveal surprisingly little 
variation in flow rates in competent layers, either with 
layer thickness or with n value. (Recall that for 0 = 45 °, 
M = R n, regardless of thicknesses.) Computed values of 
M for 30 ° or 60 ° (in Table 2) show distinct variations with 
thickness; M is highest when the incompetent layers are 
very thin, and lowest when the competent components 
are thinnest. Even for the thinnest incompetent layer (a~ 
= 0.1), and the cases used of n = 3 or 5, the approxi- 
mation used in solution of M (Appendix 1, 4) is valid. 
The orientations of principal strain-rates in these 30 or 
60 ° examples (0 o 0i; Table 2) show very little variation 
in incompetent layers, for different n values, as noted 
earlier. The variations for competent layers are more 
marked between n = 1 and 3, than between 3 and 5. 

The results described for 45°-shortening, or layer- 
parallel simple shearing, illustrate the maximum pos- 
sible flow partitioning for a particular multilayer. It is 
apparent that most of the bulk flow in these multilayers 
is carried by the incompetent members, particularly for 
the higher n systems. In theory, for incompetent layers 
approaching negligible thickness, their normalized 
strain-rates could approach infinity. This provides a 
possible model for layer-parallel slip in ductile systems: 
a multilayer consisting of repeated layers of one material 
component, separated by lubricated interfaces modelled 
as negligibly thin incompetent layers. 

THREE-DIMENSIONAL FLOW IN A 
BILAMINATE MULTILAYER 

Where flow is three-dimensional, and includes flow 
perpendicular to the plane of view in Fig. 1, the algebra 
becomes more complex because the power law is written 
in terms of second invariants of stress and strain-rate 
(not just a single maximum strain-rate, el). 

Only the case in which one principal strain-rate is 
parallel to layering, in the third (z) dimension perpen- 
dicular to the page in Fig. l(c), will be considered in this 
paper. This system has formerly been termed "two- 
dimensionally oblique" (Treagus 1981, 1988). The 
mathematics for fully oblique three-dimensional flow in 
power-law multilayers, comparable to the treatment in 
Treagus (1981) for Newtonian systems, is too complex 
for this present approach. 

The algebra for three-dimensional flows in two- 
dimensionally oblique systems is given in Appendix 2, 
presented in companionship with the case of plane flows 
given in Appendix 1. Only a few examples have been 
computed so far (Table 3), and so the results and 
conclusions drawn are somewhat tentative. 
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Table 3. Flow variations for bulk three-dimensional straining. 
Numerical results are given for the two special cases of bulk pure 
flattening and bulk pure constriction, for equal-thickness layers at 30 ° 
or 45 ° to bulk shortening (@3, in the xy plane, as Fig. lc). For 0 = 60 °, all 
angles are complementary to the 30 ° results, and other variables the 
same. See notes (* and ?) about orientations of principal straining 
axes, indicating switches in axes from competent to incompetent layers 

n 0 (°) M ec el Oc (°) Ot (°) 

R = 10 Bulk pure flattening E = 1 
1 45 10 -0 .23* 2.23 45 45 
3 45 23.5 -0.38* 2.38 45 45 
5 45 27.9 -0.40* 2.40 45 45 
Limiting values 36.06 -0.42* 2.42 45 45 

1 30 10 0.29* 1.98 8.74 36.19 
3 30 18.3 0.26* 2.07 5.04 36.53 
5 30 20.7 0.26* 2.09 4.54 36.58 
Limiting values 24.8 0.26* 2.11 3.82 36.64 

R = 10 Bulk pure constriction E = - 0 . 5  
1 45 10 0.39 1.61 45t 45 
3 45 23.5 0.31 1.69 45t 45 
5 45 27.9 0.30 1.70 45t 45 
Limiting values 36.06 0.29 1.71 45t 45 

1 30 10 0.64 1.49 8.74? 36.19 
3 30 18.3 0.63 1.54 5.04t 36.53 
5 30 20.7 0.63 1.54 4.54t 36.58 
Limiting values 24.8 0.63 1.55 3.82t 36.64 

* For competent layers, normalized principal flows (ec) refer to e2 
values, as kl axes are parallel to ks (so true ec = E). For incompetent 
layers, @2 are parallel to bz. 

t For competent  layers, angles of shortening (0c) refer to e2 axes, as 
b 3 axes are parallel to b z. For incompetent layers, e2 are parallel to e r  

dimensional) flows. Such extreme variations of M with 
0, particularly at higher n, are not found for the pure 
flattening or constrictional flows. It is apparent in Table 
3 that M values are higher for 0 = 45 ° than for 30 °, but 
only by about 50%. 

For three-dimensional flows, the expression for M 
(equation 4) has a limiting value, for any set of ac,  0, 
etc., because at high n, the exponent term, ((n-1)/2n},  
approaches 1/2. So the orders-of-magnitude changes in 
M from R to R ~, found for plane flow at significant 
values of n (e.g. n = 5; Fig. 3b), are not reached in pure 
flattening or constriction (see limiting values, Table 3). 
It seems as if the power-law effect is suppressed, and 
such multilayers differ far less significantly from 
Newtonian layers (with equivalent R) than they do in 
plane flows. This is confirmed by only slight variations in 
e values, for increasing n (Table 3). 

An important result for the flattening and constric- 
tional examples are the switches in principal straining 
axes from competent to incompetent layers, as indicated 
in Table 3 by which principal axes are parallel to b z. 
These are comparable to the interchanges of finite strain 
axes in three-dimensional strain refraction (Treagus 
1983). Thus, switches in straining directions between 
competent and incompetent layers are likely to be found 
for other types of bulk three-dimensional flows, particu- 
larly if close to flattening or constriction. This remains to 
be demonstrated with further studies. 

Summary of equations derived in Appendix 2 

Using the same definitions of variables as previously, 
plus defining E = b2/b I (bulk), and F = E2/(2 + E) 2, the 
necessary equations are 

M = R[1 + sin 2 20/{a 2 (COS 2 2 0  

+ 3F}] (n-t)/2" (4) 

tan 20c = tan 20/(ac +Mai)  (5a) 

tan 201 = M tan 20/(ac + Mai) (5b) 

and 

e¢ =½[(2 + E) cos 20/cos 20¢ - E] 

e I = ½[(2+E) cos 20/cos 201 - E]. 

For 0 = 45 ° 

ec = ½[(2 + E)/(ac + Max) - E] 

E I =½[M(2 + E)/(ac + MaO - E]. 

(6a)  

(6b) 

Results and examples 

A few examples of results obtained from the above 
algebra are given in Table 3. Attention will be focused in 
particular on examples of equal-thickness bilaminate 
multilayers in bulk flattening or constrictional flow. 

It is interesting to compare results for 45 ° layer orien- 
tations with those derived earlier for plane flows. The 
relationship, M = R n, for 0 = 45 °, or layer-parallel 
simple shearing, is only found for plane (two- 

A P P R O X I M A T I O N S  A N D  C O N C L U S I O N S  

Flow partitioning in multilayers, in two dimensions 

(1) Most of the bulk multilayer flow becomes par- 
titioned in the incompetent layers, for layer orientations 
of 30-60 ° (0) to bulk shortening. 

(2) Maximum partitioning occurs at the 45 ° orien- 
tation to shortening, or layer-parallel simple shearing 
(LPSS). Partitioning is most marked at higher values of 
the power-law exponent, n. 

(3) Flow in competent layers is highly sensitive to 0 
and to n. Minimum flow is always at 45 °, and becomes 
negligible with high n. 

(4) For incompetent layers, the values and orien- 
tations of principal strain rates are relatively insensitive 
to n. 

(5) The maximum normalized flow for the incompe- 
tent layers can be approximated (except for greatly 
unequal layer thicknesses) to el ~ 1/aI (i.e. insensitive to 
R and n). So for equal-thickness layers, el = 2; i.e. twice 
the bulk flow. Thus, the strain-rate in incompetent 
layers in an equal-thickness bilaminate will only vary 
between one and two times the bulk rate. 

Three-dimensional flow variations 

(1) For non-plane flows there is a more complex 
relationship between flow, viscosity ratio and layer 
orientation than for plane flows. 
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(2) Preliminary results show a lower degree of flow 
partitioning for bulk flattening and constrictional flows 
than for plane straining. 

(3) The value of n does not appear to have a signifi- 
cant effect on the partitioning of flow, for bulk flattening 
or constriction. This leads to the tentative conclusion 
that for these special deformations, power-law multi- 
layers may be validly approximated to Newtonian sys- 
tems. 

Geological conclusions: implications for the geometry 
of deformed rocks 

(1) If rocks in ductile deformation flow as power-law 
fluids, the viscosity or competence contrast can be 
expected to vary during deformation. 

(2) Muitilayered rocks which are not in homogeneous 
layer-parallel shortening should have undergone a com- 
plex history of flow partitioning between relatively com- 
petent and incompetent layers, during a finite 
deformation. 

(3) Rocks undergoing layer-parallel simple shear 
should have strongly partitioned deformation. If flow is 
according to the power law (e.g. n = 3 or 5), virtually all 
the multilayer deformation should be accommodated 
within the incompetent layers. 

(4) The incompetent lithologies will probably have 
deformed in rough approximation to steady-state non- 
coaxial flow (simple-shear dominated). The competent 
lithologies will probably have experienced fluctuatingly 
weak flow, close to coaxial, and close to layer-parallel or 
layer-perpendicular. 

(5) During a deformation, flow variations in space 
between adjacent layers, and in time within any particu- 
lar layer, will provide important controls on folding 
within multilayered systems, particularly within fold- 
limb packages. 

(6) Though the theoretical results are based on steady 
strain-rates, and so are probably not directly applicable 
to folding, they do tend to reinforce classical fold-strain 
models: i.e. tangential longitudinal strain with negligible 
limb strain in relatively competent layers; flexural flow 
or layer-parallel shear for incompetent layers; and 
homogeneous strain only for bulk layer-parallel strain- 
ing, or materials with no effective viscosity ratio. 
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APPENDIX 1 
ALGEBRA FOR PLANE FLOW VARIATIONS 

(1) Requirement of equal exx for all layers. For plane-strain isovolu- 
metric flows, exx can be written as 

bxx = - b  1 cos 20 

for each layer, where b 1 is the principal elongating strain rate, at (0 - 
90) ° to layering, x is parallel to layering, and y is perpendicular (Fig. 1). 
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Hence, subscripting with C for competent  (stiffer) layers and I for 
incompetent,  throughout,  

el(c) cos 28 c = bl(i) cos 201 = el(bulk ) COS 28(bulk). (A1) 

Normalizing the principal flows to factors of the bulk principal flow, as 

e C = e l ( c ) / e l ( bu lk ) ,  g I = e1( l ) /e l (bulk) ,  (A2) 

gives 

e c = cos 20/cos 20 c (A3a) 

and 

e I = cos 20/cos 201. (A3b) 

(2) Requirement o f  equal rxy at the layer interface boundaries gives 

r x y ( c  ) = rxy( l  ) = rxy(bulk).  (A4) 

Write in terms of shear viscosity,/,, and strain rate exy, as 

rxy = 21.lexy 

exy(c)/exy(l ) = 12i/~C. 

Define the viscosity ratio/~c//al = M, and write in terms of principal 
strain rates 

~'l(c) sin 20c/hi(c) sin 81 = 1/M, 

or in normalized form 

e c sin 2Oc/e I sin 20 t = I/M. (A5) 

Substituting (A3) gives 

tan 20c/tan 201 = 1/M. (A6) 

For Newtonian materials, this is equivalent to equation (9) in Treagus 
(1973). 

(3) The requirement o f  bulk multilayer strain is that the sum of 
individual layer-parallel shear strains, divided by total thickness, is the 
bulk (or average) shear strain (Biot 1965, p. 432). Using ac  for the 
competent layer thickness proportion, and % for incompetent (where 
ac  + al = 1), 

exy(bulk) : O~cexy(C) + alexy(1). 

Writing, as before, in terms of normalized principal strain rates gives 

ec a c  sin 28c + el al sin 201 = sin 20. (A7) 

Substituting for ec and el from (A3) gives 

a c tan 2Oc + al tan 201 = tan 20. (A8) 

Then, from (A6), 

tan 20c = tan 28/(ac + M al) (A9a) 

and 

tan 201 = M tan 28/(a c + Mat).  (A9b) 

For equal thickness layers (i.e. a c  = al = 0.5), 

tan 20 c = 2 tan 28/(1 + M), (A10a) 

and 

tan 201 = 2M tan 28/(1 + M). (A10b) 

Up to this stage, it is clear that if 0 = 0 ° or 90 ° (layer-parallel pure 
shearing, LPPS), rxy = 0, and so ec = el = 1, which proves homogene- 
ous flow, For 0 = 45 ° (layer-parallel simple shearing, LPSS), ex, = 0, 
(A6) reduces to ec/e I = I/M, and (A7) reduces to e c a c + e I a I = 1. 

(4) Determining viscosity ratio, M. This is a constant, independent of 
strain orientation and strain rates, only for Newtonian materials 
(n = 1). For n # 1, M is a variable. The simplified expression used for 
two-dimensional power-law flow (after Tsenn & Carter 1987), b = A 
o" (where b is the steady-state strain rate, a the differential stress, A a 
material constant, and n the stress exponent),  can be written as o = 
2/~b, with viscosity, ~, given by 

,a = b 0 / ' -  I)12A1/~ ( A l l )  

(Cobbold 1983, equation 59). For a bilaminate multilayer with layers 
of  equal n value, it is found that 

M =/~c//xl = R • [ec/el] 1/'-1 , (A12) 

where R = (AI/Ac) 1/" is the viscosity ratio for layer-parallel pure 
shearing (Cobbold 1983, equation 62). It was noted in Section (3) that 
for 0 = 45 °, ec/e~ = I/M, and thus (A12) simplifies to M = R" (Cobbold 
1983, equation 64). 

The determination of M for particular values of R, 0, a c  and al is 
achieved as follows. Squaring (A9) and making the trigonometric 
substitution 1 + tan 2 20 = sec '20 ,  gives 

cos 2 28 c = ( a  c + Mcq)21[(ac + Mat) 2 + tan 2 20] (A13a) 

and 

cos 2 201 = (ac  + Mcq)2/[(ac + MaO 2 + M 2 tan 2 20]. (A13b) 

From (A3) squared and (A13), 

(el/ec) 2 = [(a C + Mai)  2 + M e tan 2 28]/[(a c + Mal) 2 

+ tan 2 20]. (A14) 

Using (A12), (A14) becomes 

(M/R)2,/(.-1) = [(a c + Mal) 2 + M 2 tan 2 20]/[(a c + Mai)  2 

+ tan 220]. (A15) 

This polynomial can be solved for M in terms of R by keeping only 
the M 2 right-hand terms. This can be shown to be valid for the cases 
used in this paper of R = 10 (or more),  and M always > R. However,  it 
also requires M a  I > > 2 ac ,  so will break down as a I approaches zero. 

Using this method of solution for M, yields 

M 2n/(n-1) "~" R2n/(n-1)[l + t a n  2 28/a~], 

which can be rewritten as 

M ~ R[1 + (tan 2 20/a2)] ("-1)/2". (A16) 

This is the expression which will be used for M. 

For equal thickness layers (a c = al = 0.5), 

M ~ R[1 + 4 tan  2 28] (n-I)/2". 

Recall, from earlier, that equation (A16) will not be valid for O = 45 °, 
where M = R ", regardless of thicknesses a c and a I. 

The key equations required for determining values of flow partition- 
ing are summarized from the above algebra, as equations (1)-(3) in the 
main text. 

APPENDIX 2 
ALGEBRA FOR THREE-DIMENSIONAL FLOWS 

The expression used for two-dimensional power-law flow, ~ = 
Ao ~, is a simplification of the general expression for power-law 
Reiner-Rivlin fluids 

d =  A r n, 

where d is the second invariant of the strain-rate (stretching) tensor 

d 2 = ~(elt .2 + b22 + b2) (AI7) 

and r is the octahedral shear stress (Cobbold 1983). Thus the shear 
viscosity is 

iz = d(l/"-l)/2A l/". (A18) 

For isovolumetric plane flow, as considered in Appendix 1, be is 
zero; hence d = bl, and (A18) is written as (A l l ) .  The expressions 
formerly derived (A1-A16) could thus be written in terms of maxi- 
mum principal strain rates, el, and normalized values (e.g. ec). 
However,  where flow is three-dimensional, and includes flow perpen- 
dicular to the plane of view in Fig. 1, the expression for viscosity ratio, 
M, is in terms of d, and the method of solution of equations satisfying 
flow compatibility is more involved. 

For three-dimensional flow, the viscosity ratio M =/~C/Pl is 
written 

M = :zc//~ l = R .  [dc/dt] l / ' -  1, (A19) 

where R = (AI/Ac) 1/", as before, and d c and d I refer to strain-rate 
invariants (as A17) in the competent and incompetent layers. 

Only the case where flow in the third (z) dimension (perpendicular 
to the page in Fig. lc) is a principal strain-rate (parallel to layering) will 
be considered in this paper. Assume this to be a non-zero be for the 
present. (The following maths will allow interchange of principal 
values so that this third dimension of layer-parallel principal straining 
can also be bl or ~}3.) This system has been termed "two-dimensionally 
oblique" (Treagus 1981, 1988). 

For isovolumetric flow (bj + e2 + e3 = 0) for the bulk material, and 
for the competent and incompetent components,  d can be written from 
(A17) in terms of bt and e2: 

d 2 = (~,2 + ~,1~ 2 + ~2).  (A20) 

15:3]5-g 
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As in Appendix  1, it is useful to normalize the principal strain rates 
in each layer as ratios of  bulk/ '1 ,  termed e (see A2). However,  an 
additional term is needed to express the non-plane nature of the bulk 
flow. This, termed E,  is defined as the normalized layer-parallel flow in 
the third dimension (kz), here  b2: 

E = e 2 / e l ( b u l k ) .  (A21) 

Now, from (A19), M can be written as 

(M/R)  "/O-n) = dc/dl, (A22) 

which becomes from (A20), and for equal b 2 throughout  the multilayer 

(M/R)2n/~I-'O = (k2¢c) + 01(c)e2 + e 2 ) /  

(/~10) + b,~l)b2 + b~). (A23) 

So writing in terms of normalized flows e o  el and E 

(M/R)  2"/O-m = (e 2 + ecE + E2)l(e 2 + eiE + Ez). (A24) 

This is a more  complex expression than its equivalent (A12) for plane 
flow. 

(1) Requirement o f  equal exx in all layers is written for non-plane 
flows in the form 

e~x = ½[(bl + e3) - (el - e3) cos 20], 

which, when equated (cf. A1) for competent ,  incompetent  and bulk 
relationships, and following the above normalizations gives 

(2e c + E) cos 20¢7 = (2e I + E) cos 201 = (2 + E) cos 20. (A25) 

So 

ec = ½[(2 + E)  cos 20/cos 20c - E] (A26a) 

el = ½[(2 + E) cos 20/cos 201 - E].  (A26b) 

(2) Requirement o f  equal rxy at the layer interface boundaries means  

exy(c)/exy(1) = ,Ul/~/C = 1/M. 

In the present  case. and written, as above, in normalized form 

(2ec + E)  sin 20c/(2e I + E)  sin 201 = 1/M. (A27) 

From (A25) it follows 

tan 20c/tan 201 = 1/M (A28) 

as for plane flows (A7). 

(3) Requirements o f  bulk multilayer strain are 

ac(2e c + E) sin 20 c + cq(2e I + E) sin 201 

= ( 2 + E )  sin20.  (A29) 

From (A25), 

ac t an  20 c + a I tan 201 = tan 20 (A30) 

tan 20 c = tan 20/(a c + Mat)  (A31a) 

tan 201 = M tan 20/(ct c + M al). (A31b) 

These are equivalent to (A8) and (A9) in Appendix  1. 

(4) Determination o f  M involves squaring (A25) and rearranging to 

cos 2 20 c = (2 + E)  2 COS 2 20/(2e c + E) 2 (A32a) 

cos 2 201 = (2 + E)  2 cos 2 20/(2e I + E)  2. (A32b) 

Squaring (A31) and making trigonometric substi tutions,  as in Appen-  
dix I, gives 

cos 2 20 C = (a c + Mal)2/[(ac + MaO 2 + tan e 20]. (A33a) 

cos 2 201 = (a C + Ma2)2/[(ac + Mal) 2 + M tan 2 20]. (A33b) 

Equat ing (A32) and (A33), and writing 

B = a c + M a  I (A34) 

yields 

(2ec + E) 2 = (2 + E) 2 cos 2 20 (B E + tan 2 20)/B 2 (A35a) 

(2e I + E) e = (2 + E)  2 cos 2 20 (B 2 + M tan 2 20)/B 2. (A35b) 

These expressions must  be solved with (A24), to determine M, so 
they need to be expressed in terms of (e 2 + ecE + E 2) and ( 4  + el E + 
E2). Noting 

4(e~ + ecE + E 2) = (2e c + E) 2 + 3E 2 

(A24) is rewritten 

(M/R)  2n/(l-n) = [(2 + E)2(B 2 cos 2 20 + sin 2 20) + 3B2E2]I 
[(2 + E)2(B 2 cos 2 20 + M 2 sin 2 20) + 3BZE2]. (A36) 

Expanding B (from A34), and just including M 2 terms to allow a 
solution for M in terms of R to be obtained (as Appendix  1), gives 

M ~ R[1 + sin 2 20l{aZ(cos 2 20 + 3F)}] ('~-l)/2n, (A37) 

where 

F = E2/(2 + E) 2. (A38) 

This is the key equation for M in non-plane flows. 

At very high n, {(n - 1)/2n} ~ 1/2, and so (A37) tends to 

M ~ RX/[1 + sin 2 20/{ct2(cos 2 20 + 3F)}]. 

For plane flows, E = 0, so F = 0, and (A37) becomes equivalent to 
(A16). 

For pure flattening bulk flow, E = 1, and thus F = 119. For pure 
constrictional bulk flow, E = - 112, and F = 1/9, also. So these two 
cases have identical M expressions (A37), for the same R, ax and 0. For 
equal-thickness layers (al = 0.5) in pure bulk flattening or constric- 
tion, 

M~-R[1  + 12sinZ20/(3cosZ20+ 1)] (n-1)2n. (A39) 

For 0 = 45 °. this becomes 

M --~ R(13) ( ' -  0/2~. (A40) 


